122 research outputs found

    Hands-on Quantum Programming Labs for EECS Students

    Full text link
    This report presents a practical approach to teaching quantum computing to Electrical Engineering & Computer Science (EECS) students through dedicated hands-on programming labs. The labs cover a diverse range of topics, encompassing fundamental elements, such as entanglement, quantum gates and circuits, as well as advanced algorithms including Quantum Key Distribution, Deutsch and Deutsch-Jozsa Algorithms, Simon's algorithm, and Grover's algorithm. As educators, we aim to share our teaching insights and resources with fellow instructors in the field. The full lab handouts and program templates are provided for interested instructors. Furthermore, the report elucidates the rationale behind the design of each experiment, enabling a deeper understanding of quantum computing.Comment: 68 pages, 29 figures; several typos correcte

    A Cooperative Diversity-Based Robust Mac Protocol in Wireless Ad Hoc Networks

    Get PDF
    In interference-rich and noisy environment, wireless communication is often hampered by unreliable communication links. Recently, there has been active research on cooperative communication that improves the communication reliability by having a collection of radio terminals transmit signals in a cooperative way. This paper proposes a medium access control (MAC) algorithm, called Cooperative Diversity MAC (CD-MAC), which exploits the cooperative communication capability of the physical (PHY) layer to improve robustness in wireless ad hoc networks. In CD-MAC, each terminal proactively selects a partner for cooperation and lets it transmit simultaneously so that this mitigates interference from nearby terminals, and thus, improves the network performance. For practicability, CD-MAC is designed based on the widely adopted IEEE 802.11 MAC. For accurate evaluation, this study presents and uses a realistic reception model by taking bit error rate (BER), derived from Intersil HFA3861B radio hardware, and the corresponding frame error rate (FER) into consideration. System-level simulation study shows that CD-MAC significantly outperforms the original IEEE 802.11 MAC in terms of packet delivery ratio and end-to-end delay

    Minimizing Spatial and Time Reservation With Collision-Aware DCF in Mobile Ad Hoc Networks

    Get PDF
    Carrier sensing is widely adopted in wireless communication to protect data transfers from collisions. For example, distributed coordination function (DCF) in IEEE 802.11 standard renders a node to defer its communication if it senses the medium busy. For the duration of deferment, each frame carries, in its MAC header, a 16-bit number in microseconds during which any overhearing node must defer. However, even if the carrier signal is detected, both ongoing and a new communication can be simultaneously successful depending on their relative positions in the network or equivalently, their mutual interference level. Supporting multiple concurrent communications is important in multihop ad hoc networks in order to maximize the network performance. However, it is largely ignored in DCF of the 802.11 standards because it is primarily targeted at single-hop wireless LANs. In addition, in DCF, the time duration information mentioned above is not delivered to all potential interferers, particularly those in the distance. This paper proposes Collision-Aware DCF (CAD) that efficiently utilizes the available channel resource along with the spatial as well as time dimension. First, each node makes its deferment decision adaptively based on the feedback from the communication counterpart and the status of the medium rather than on a simple, fixed carrier sense threshold as DCF. Second, CAD embeds the spatial and time reservation requirements in the PHY header, which is transmitted at the lowest data rate, so that a larger group of neighbors become aware of the ongoing communication and thus avoid collisions. Extensive experiments based on ns-2 network simulator show that CAD consistently outperforms DCF regardless of node mobility, traffic intensity, and channel randomness. For practicality, this paper discusses the implementation of CAD based on the DCF specification

    Towards Low-Barrier Cybersecurity Research and Education for Industrial Control Systems

    Full text link
    The protection of Industrial Control Systems (ICS) that are employed in public critical infrastructures is of utmost importance due to catastrophic physical damages cyberattacks may cause. The research community requires testbeds for validation and comparing various intrusion detection algorithms to protect ICS. However, there exist high barriers to entry for research and education in the ICS cybersecurity domain due to expensive hardware, software, and inherent dangers of manipulating real-world systems. To close the gap, built upon recently developed 3D high-fidelity simulators, we further showcase our integrated framework to automatically launch cyberattacks, collect data, train machine learning models, and evaluate for practical chemical and manufacturing processes. On our testbed, we validate our proposed intrusion detection model called Minimal Threshold and Window SVM (MinTWin SVM) that utilizes unsupervised machine learning via a one-class SVM in combination with a sliding window and classification threshold. Results show that MinTWin SVM minimizes false positives and is responsive to physical process anomalies. Furthermore, we incorporate our framework with ICS cybersecurity education by using our dataset in an undergraduate machine learning course where students gain hands-on experience in practicing machine learning theory with a practical ICS dataset. All of our implementations have been open-sourced.Comment: accepted to the 20th Annual IEEE International Conference on Intelligence and Security Informatics (ISI

    Scanless Fast Handoff Technique Based on Global Path Cache for WLANs

    Get PDF
    Wireless LANs (WLANs) have been widely adopted and are more convenient as they are inter-connected as wireless campus networks and wireless mesh networks. However, timesensitive multimedia applications, which have become more popular, could suffer from long end-to-end latency in WLANs.This is due mainly to handoff delay, which in turn is caused by channel scanning. This paper proposes a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.GPC properly captures the dynamic behavior of the network andMSs, and provides accurate next AP predictions to minimize the handoff latency. Moreover, the handoff frequencies are treated as time-series data, thus GPC calibrates the prediction models based on short term and periodic behaviors of mobile users. Our simulation study shows that GPC virtually eliminates the need to scan for APs during handoffs and results in much better overall handoff delay compared to existing methods

    Scanless Fast Handoff Technique Based on Global Path Cache for WLANs

    Get PDF
    Wireless LANs (WLANs) have been widely adopted and are more convenient as they are inter-connected as wireless campus networks and wireless mesh networks. However, timesensitive multimedia applications, which have become more popular, could suffer from long end-to-end latency in WLANs.This is due mainly to handoff delay, which in turn is caused by channel scanning. This paper proposes a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.GPC properly captures the dynamic behavior of the network andMSs, and provides accurate next AP predictions to minimize the handoff latency. Moreover, the handoff frequencies are treated as time-series data, thus GPC calibrates the prediction models based on short term and periodic behaviors of mobile users. Our simulation study shows that GPC virtually eliminates the need to scan for APs during handoffs and results in much better overall handoff delay compared to existing methods

    Adaptive Multicast on Mobile Ad Hoc Networks Using Tree-Based Meshes With Variable Density of Redundant Paths

    Get PDF
    Multicasting has been extensively studied for mobile ad hoc networks (MANETs) because it is fundamental to many ad hoc network applications requiring close collaboration of multiple nodes in a group. A general approach is to construct an overlay structure such as multicast tree or mesh and to deliver a multicast packet to multiple receivers over the overlay structure. However, it either incurs a lot of overhead (multicast mesh) or performs poorly in terms of delivery ratio (multicast tree). This paper proposes an adaptive multicast scheme, called tree-based mesh with k-hop redundant paths (TBM k ), which constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. It is designed to make a prudent tradeoff between the overhead and the delivery efficiency by adaptively controlling the path redundancy depending on network traffic and mobility. In other words, when the network is unstable with high traffic and high mobility, a large k is chosen to provide more robust delivery of multicast packets. On the other hand, when the network traffic and the mobility are low, a small k is chosen to reduce the overhead. It is observed via simulation that TBM k improves the packet delivery ratio as much as 35% compared to the multicast tree approach. On the other hand, it reduces control overhead by 23–87% depending on the value of k compared to the multicast mesh approach. In general, TBM k with the small value of k offers more robust delivery mechanism but demands less overhead than multicast trees and multicast meshes, respectively

    Power-Stepped Protocol: Enhancing Spatial Utilization in a Clustered Mobile Ad Hoc Network

    Get PDF
    While most previous studies on mobile ad hoc networks (MANETs) rely on the assumption that nodes are randomly distributed in the network coverage area, this assumption is unlikely to hold, as nodes tend to be cluttered around hot spots like the site of an accident or disaster. We refer to this as a clustered layout. Intuitively, a MANET with the clustered layout may suffer from serious performance degradation due to the excessive collisions in congested hot spots and space underutilization of sparse areas. In this paper, we propose a power-controlled network protocol, called the power-stepped protocol (PSP), that maximizes the spatial utilization of limited channel bandwidth. Using a number of discrete power levels available for the underlying wireless network hardware, PSP finds the appropriate power level for each node in a distributed and a coordinated manner without causing any serious problem at the medium access control and network routing layers. A unique feature of this approach is the use the chosen radio power for both data and control packets, and thus, it requires neither any special mechanism (e.g., a separate control channel) nor frequent power adjustments. Our extensive ns-2-based simulation results have shown the proposed PSP provides excellent performance in terms of packet delivery ratio and delay, as well as the network capacity

    Cache Invalidation Strategies for Internet-based Vehicular Ad Hoc Networks

    Get PDF
    Internet-based vehicular ad hoc network (Ivanet) is an emerging technique that combines a wired Internet and a vehicular ad hoc network (Vanet) for developing an ubiquitous communication infrastructure and improving universal information and service accessibility. A key design optimization technique in Ivanets is to cache the frequently accessed data items in a local storage of vehicles. Since vehicles are not critically limited by the storage/memory space and power consumption, selecting proper data items for caching is not very critical. Rather, an important design issue is how to keep the cached copies valid when the original data items are updated. This is essential to provide fast access to valid data for fast moving vehicles. In this paper, we propose a cooperative cache invalidation (CCI) scheme and its enhancement (ECCI) that take advantage of the underlying location management scheme to reduce the number of broadcast operations and the corresponding query delay. We develop an analytical model for CCI and ECCI techniques for fasthand estimate of performance trends and critical design parameters. Then, we modify two prior cache invalidation techniques to work in Ivanets: a poll-each-read (PER) scheme, and an extended asynchronous (EAS) scheme. We compare the performance of four cache invalidation schemes as a function of query interval, cache update interval, and data size through extensive simulation. Our simulation results indicate that the proposed schemes can reduce the query delay up to 69% and increase the cache hit rate up to 57%, and have the lowest communication overhead compared to the prior PER and EAS schemes
    corecore